
ALS Controls Expansion / Superbend I/O card step 2 revised 8/29/99

the following was developed by Alan Biocca, Mike Chin, and Bill Brown
results from 7/30 meeting and subsequent work

Hardware Requirements

format: Industry Pack

4 16 bit analog input channels
analog characteristics ... (see ILC-2 rqmnts)

2 16 bit analog output channels
analog characteristics ... (see ILC-2)

2 bytes digital i/o
with bytewise input/output selectability
drive / input characteristics ... (see ILC-2)

product serial number
stored in onboard serial mem

ADC, DAC calibration info
stored in onboard serial mem

control output during power-on
details ... tbd. depends on board space. (chin) tbd

serial eeprom for calibration coefficients
no write-enable jumper required

protocol sufficiently difficult
RT system will not have write protocol code

reading and writing will be handled by host CPU software
no room in XILINX for help

control output behavior during reboot
Mike to see if he has room to add jumper tbd

interrupt behavior
insuff room for averaging. tbd??

readout behavior
tbd. reading once may produce bad value. read twice
and compare.

IP id header
differentiable from first boards.
different board model number or revision.
no serial number required since it will be in flash mem

binary i/o changes tbd...
was two bytes
might change to 1.5 bytes
review usage and transition module
this might free up the bits needed for eeprom

transition module tbd ...
should nail this down as it interacts some with ip

calibration and test plan
labview based calibration system

writes mx+b equivalent coefficients
writes segmented line fit coefficients (possibly, not req initially)

format of eeprom memory (proposed)
16-64K serial eeprom <size tbd> tbd ...
treat as 'disk files' of ascii data

first byte of memory is 'format indicator byte '
this constant reflects the format used

and will change if we need to change format in the future
chosen to be unusual value
not found in unprogrammed memory or ascii files
value <tbd> (in 128..255 range)

file format
file name

is [#$%*+-.:_0-9a-zA-Z]+
terminate with <tbd>

code above 128
zero or more lines of ascii

zero or more ascii characters, 0 .. 127
EOL line separator

use single character
use unix style <LF> linefeed

each line of ascii will typically be
tag <space> value <EOL>
eg

rev 02a1
serial 1-137

EOF mark
terminates the file
not found in ascii data, not in 0..127
use <tbd>
two EOF marks in a row signifies end of media
adding a file requires erasing second EOF mark
and terminating with two EOF marks

to maintain end of media

content of eeprom memory (proposed)

product rev and serial number (ascii, in file 'id')
rev model-revno
serial run-board
date production-date

calibration data (file 'cal')

date cal-date

ai0m slope value analog inputs
ai0b offset value
...
ai3m
ai3b
ao10m val analog output slope
ao0b

ao1m
ao1b

 OR
ai 0 32767 voltage
ai 0 -32767 voltage
ai 1 32767 voltage
ai 1 -32767 voltage

 OR
ai 0 mincount minvolts maxcount maxvolts
ai 1 ...
ai 2
ai 3
ao 0
ao 1

extended calibration data (file 'ecal')
ai 0 count voltage
ai 0 count voltage
...
ai 1 count voltage
...
ao 0 count voltage
...
ao 1 count voltage
...

reading eeprom memory
serial from eeprom to xilinx
serial to parallel in xilinx?
readout parallel via bus?
suggestion - software to copy out entire contents into ram at startup

read routines to read from ram image

writing eeprom memory
writing program sits in labview on pc
serializes to bus
bus to xilinx
xilinx to eeprom part
xilinx contains little support for writing

to help protect memory from erasure
consider a write-enable jumper?
writing functions (direct to eeprom memory)

format
writes EOF throughout memory

delete files (name)
overwrites first byte of name with EOF
effectively setting end of media there
deletes named file and those after
write EOFs over files??

open file for write (name)
finds end of media
writes file name, end marker for name
can have only one open write file at a time

write data to open file
checks characters for validity
converts end of line

writes to file
close

terminate write
write dual EOF

in case write ended inside old file?
eof

