
02/11/94
Recommended Enhancements to the ALS Electron Beam Control System

by Mike Chin
Rev 1

Note: This document was originally released as LSEE-114. It has been withdrawn & will be re-released with
only the background information as an LSEE note. The recommendations will be released separately as a
memo.---- 11/02/94

Change History
Rev 1 Page 1,
PP1-4: Measured packet rate at CMM found to be ~1.3KHz, not 2KHz. Minimum time for CMM to

unload packet should be ~25us, not 50us. Changed reference to "2 packet times" for linkb calls to
"master/slave" transmission

Abstract
I am proposing several upgrades to the Electron Beam Control System (EBCS). These changes do

not involve any hardware changes, nor will they require alterations to any of the existing console
applications using functions from the software library linkb. These changes will ease the upgrading of the
PC consoles to Win95 and WinNT. Most importantly, by improving data flow rates several times over what
is currently achieved, these upgrades may provide enhancements that will improve the quality of light to the
beamlines.

BackGround
The present EBCS is essentially unchanged since successful ALS commissioning in the beginning

of 1993. There are ~450 Intelligent Local Computers (ILCs) in Bldg 6, consisting of an 80186EB/80187
computational processor, analog/digital I/O and an 80152 communication processor which independently
drives a 2Mbit/sec multi-dropped serial link. These ILCs are approximately equally distributed among 43
2Mbit/sec fiber optic links, which are collectively called the "SBX Links". Each link sends continuous
~100byte packets at a ~1.3KHz rate (100bytes * 1.3KHz * ~10bits/byte = ~1.3MBit/sec effective data rate).
The ~35% overhead in data rate is due to the "Master/Slave" protocol, where the 100byte data is only
returned from the ILC slave in response to a "ReadRequest" command packet from the CMM master. Each
ILC can have up to 8KBytes of memory that is monitored by the control system. This memory is divided into
the "inactive" and "active" areas. The "inactive" area, ~1-3KBytes consisting primarily of constants & other
read-only parameters, is uplinked by the Control System only a few times a week, in response to a specific
Control Room activation. The "active" area, ~1-4KBytes of values constantly updated by the 80186, is sent
out in 100Byte packets at the 1.3KHz rate by the 80152 in response to data requests from the Command
Master Module (CMM).

The SBX Links terminate in Bldg 80 into the CMM crate. There are 7 CMM 80486-based processor
boards in this crate (which has room for at least 10 processors), each handling up to 8 links. The CMM
processors access each of their 8 SBX links on a per/packet basis in a round-robin fashion. Therefore, in
order to keep each of its 8 links continuously sending data, each CPU must unload a packet every (1/1.3KHz
/ 8) = ~100us. As it takes at least ~25us to unload each 100 byte packet via the SBX bus interface under
CPU control (50 words * 500ns / word), the CMM CPU has <70us to do housekeeping (i.e. figure out where
to place the data in its local memory, check for commands to send, etc.) for each link.

As a very approximate measure of performance, assuming (450 ILCs / 43 links = ~10 ILCs/link),
and assuming that each ILC has an active area of 2 Kbytes, this means each link must send ~20 Kbytes =
200 packets in order to totally refresh its share of the CMM memory. At 1.3Kpackets/sec, this means each
link (and thus the entire machine database as represented by the collective memories of all the CMM
processors) is refreshed at a 6.5Hz rate.

The CMM processors in parallel make up the shared memory which is accessed by each of the 3
Display Micro Module (DMM) crates. Each crate consists of 6 DMM 80486 processors; these 18 processors
each have independent hardware-arbitrated access to the CMM memory. Each DMM processor is in turn
tied to a single PC-based display console via two SBX Links. One link provides the linkb protocol; this is

2

the software library for such calls as "GetAM()" or "SetSP()" and is used by practically all the console
applications (DBChan, SRVac, etc.). Each calls requires one Master/Slave transmission; one packet from the
PC master to the DMM describing the data it wants, and a return packet from the slave DMM with the data.
Under Win3.1, >1000 GetAM() calls/sec are achieved; under WinNT, the performance is ~830 GetAM()
calls/sec because the additional system security provided by the NT Device Driver requires additional
software layers compared to DOS. The other link is used only by the application CtlPlay; it provides a lower-
level protocol where the DMM does graphics generation.

Each DMM has access to all of the memory, but because the particular piece of data it will be
requested to deliver is driven by what console applications are running, the access to the shared memory
tends to be frequent but scattered. This rapid but random data access paradigm was one of the design
considerations in choosing a protocol with short packets, low overhead and fast turnaround. By
comparison, Remote Procedure Calls between AUI-ethernetted NT stations for 100 byte packets average
only one-quarter the throughput (~250 calls/sec in Ref A).

Recommendations:

Install Rest of CMM SBX Links
The present configuration of installed links and CMM processor boards only utilizes 43 out of 64

possible links. Simply finishing this job would result in nearly a 50% increase in update speed of the
machine database. Some work would be required to optimally redistribute the ILCs in the machine amongst
the new links, and to upgrade the scanning sequence for the CMM.

The present CMM crate will hold at least 3 more processors (these processors have already been
purchased). This would add 24 additional links to make a total of 80; in fact the fiber optic modules for 80
links are already installed. Fiber optics cables would have to be added. This would provide 2X the present
data throughput.

TimeTag & Real-time DMM Programming
M. Fahmie has completed the design of a system that would permit all ILCs to timetag data. This

system would enable synchronized data collection/setting at the ILCs. This system would distribute clock
pulses and absolute time data reference to existing interconnect points. A timing and possibly a serial data
interrupt service would have to be implemented on each ILC using this timing; time-slot based tasking
would be a much easier programming model for generation of synchronized outputs as compared to the
current round-robin servicing of database channel types.

The generation of time-tagged information would facilitate real-time programming on a DMM
processor. Data that is presently updated via semaphore flags would instead by nominally ready at
predefined times; conversely, data setpoints calculated by a DMM process would have a definite time
relationship to when they actually appeared. Moderate speed (10-20Hz) correction algorithms such as local
bump could be addressed via time-tag & a dedicated DMM processor board. This DMM processor would
not be used for PC-console work, or any other requirements that cause asynchronous processing.

Update CtlPlay use Linkb calls
As described above, an entire SBX Link from the DMM is dedicated to support a single PC console

display program, CtlPlay. Additionally, this low-level protocol has proven difficult to recreate under
Windows NT. Whereas linkb was running in < 2mos (including Virtual Device Driver support for Win3.1
programs running under WinNT), nearly an entire year has been sporadically spent in trying to get CtlPlay
running under WinNT. CtlPlay is literally the only application holding up the migration to WinNT. CtlPlay is
also the application that causes most of the infrequent DMM lockups.

The original reason for the low-level protocol was to offload the PC-consoles from graphics
rendering; S. Magyary thought that the DMM 80486 could do a better job than the PCs, and that it would be
more efficient to ship over formatted text & simple draw commands rather than to send GetAM() data.

However, he greatly underestimated the growth of PC computing power. The typical SR CtlPlay
screen consists of ~100 values (30 each of analog, Boolean & status). Assuming that the "Arrayed Linkb"
recommendation is adopted, the data required for this screen would be handled in (~100 values / (10

3

values/call)) = 10 calls which assuming a leisurely 2ms/call still would take only 20ms. A modified sample
SDK WinNT program, gdidemo , was benchmarked to be able to paint ~500 randomly sized & placed
rectangles/sec (simultaneously with painting ~750 randomly placed characters/sec). Assuming that the
CtlPlay drawing consists of ~30 rectangles (representing magnets, power supplies, etc.), gdidemo would
indicate that the actual PC drawing time is (30 rects * 0.002 secs/rec) = 60ms. This means the total
processing time for an entire data collection and screen redraw for every graphics item would be 80ms worst
case; most of the time the rectangles are not changing. In other words, with a single unifying library of
function calls under linkb, CtlPlay would still meet its original design goal of 10Hz refresh.

Furthermore, a fair size of each ILC database structure has fields dedicated for CtlPlay formatted
data. For instance, an Analog Monitor (AMActiveType) consists of 48 bytes, of which the fields
{AsciiValue, UnitsString} whose sole use is for CtlPlay take up 16 bytes.

typedef struct {
UBYTE2Error ;
UBYTE2PreviousError ;
UBYTE2ErrorMask ;
REAL4 Value ; /* reading in floating point */
REAL4 AMReferenceValue ; /* a previous reading; saved for ref. */
REAL4 UpAlarmLim ; /* alarm if Value > UpAlarmLim */
REAL4 LowAlarmLim ; /* alarm if Value < LOALARMLIM */
REAL4 HighWaterMark ; /* save highest reading */
REAL4 LowWaterMark ; /* save lowest reading */
UBYTE2TimeStamp ;
SBYTE1 AsciiValue[4] ; /* reading in ascii (using FORMAT) */
SBYTE1 UnitsString[12] ; /* Default Units */

} AMActiveType;

 These fields are pure overhead for the ILC to generate and for the SBX Link to transmit. Removing
CtlPlay-specific formatted data would result in ~10-20% improvement in refresh rate to the CMM.

Split DataBase Structures for Fixed & Commutated Packet Slots
The "active" area structures are used by the ILC to place updated local data (source for GetAM()

for instance), and to check for incoming setpoints (destination for SetSP()). Although very easy to use, this
usage of a single structure to describe a channel is very inefficient.

For example, the Analog Monitor (AM) structure contains both a {Value} field that is potentially
changed on every link access (2KHz for a link with a single ILC) and an {Error} field that changes
(hopefully) very infrequently. Certainly the ILC is responsible for dealing with the hardware quickly &
properly if an Error does occur; when the Error status needs to get uplinked to the CMM is generally on the
order of seconds. The AM structure in an ILC is often accompanied by an Analog Control (ACActiveType)
structure; assuming a stably running machine, this structure may only be changed a few times a week.
Despite these enormous variations in how often it makes sense to uplink particular structure elements and
fields, all are given equal access time to the SBX Link.

For "read" structures like AMs, it would be more efficient to break up the structures into a "fixed"
data rate telemetry structures and a "commutated" data structures; this is commonly done on satellite data
transmissions. For instance, every "even" packet uplinked from the ILC to the CMM might be reserved for
quickly updating data (the Value fields), while the "odd" slots would slowly cycle thru less time-critical
fields (for instance, the Error field). Both data types would be accompanied by time-tags to show their
relationships.

As an example, consider the ILC monitoring the thermocouples for the Errant Photon Beam
Interlock (EPBI). It requires 18 AM channels, each consisting of 48 bytes, thus requiring (18AMs * 48
Bytes/AM) / (100 Bytes/Packet) = 9 packets. Assuming that this ILC is on a 10 ILC link, it only receives
1/10th the SBX Link accesses, so it takes 90 packet times or ~70ms to update the CMM shared memory; this
means that it is currently pointless for a PC console application to read the AMs from the EPBI any faster
than 14Hz. If on the otherhand just the {Value & TimeStamp} fields were sent, since only 4Bytes/Value +

4

2Bytes/TimeStamp) = 6 bytes per AM are sent, only (18AMs * 6 Bytes/AM) / (100 Bytes/Packet) = 2
packets are required. Even assuming a factor of 2x more packets required if using the simple algorithm of
sending "fixed" data every other slot, these data would be updated at 40 packet times ~32ms, an
improvement of 2X.

For "write" structures like ACs, it would be more efficient to reserve the next commutated packet
slot to send back the confirmation that the setpoint value had arrived at the ILC; this would preserve the
quick knob response. The ILCs currently traverse their list of database items in order in a round-robin
fashion; assuming time-based tasking is implemented, it would be more efficient to have a particular time-
slot dedicated for updating all output values at once.

Performing this upgrade would require careful consideration of what database values should be
uplinked from the ILCs to the CMM at preferred rates. Considerable effort would be required to split existing
structures into "fixed" and "commutated" structures for both ILC & DMM. However, there would be no
changes required to existing console applications, and the CMM would not have to change its scan
algorithm if the "SendOnce" upgrade (below) is implemented.

Implement SendOnce in ILCs
This is a seldom-used feature of the ILC->CMM link that would greatly improve the efficiency of

the SBX Links. It is possible for the ILC to "tag" individual database packets such that when the CMM does
the uplink that packet is then "marked" as being sent. That packet will not be resent until "retagged" by the
ILC. The purpose of this "send-once" feature was to guarantee handshaking for GPIB commands, but it
could also be implemented within each ILC to guarantee that "stale" data is not taking up time on the SBX
Link. The ILC would also become more efficient because if a packet containing AM values were still
"marked", it wouldn't have to generate new values until the old ones were uplinked.

"SendOnce" would also be key in taking advantage of "fixed" and "commutated" packet slots. For
example, all the "commutated" structures would be grouped in adjacent packets that would remain in the
"marked" condition much longer so that the "fixed" structures could receive preferential "tagging".

Install Additional 2 DMM->PC SBX Link
The SBX interface card supports 4 links; since each CMM processor can have two SBX interface

cards, this enables each processor to support 8 Links. On the DMM, only 2 of the 4 links are used; if the
other 2 links could be used the theoretical throughput would double to 800 Kbytes/sec for each display
console. Alternatively, the additional links could be used to double the number of display console PCs. In
either case, additional DMM hardware interrupts would need to be jumpered, and software vectors added to
point to the present linkb service on the DMM.

Install iRMX-1 on ILCs
There are 4-5 main ILC programs that run Power Supplies, BPMs, GPIB-devices (scopes, ion-

pumps, etc.), and RS232-devices (Collimnator, Insertion Device). They all work similarly by simply round-
robin traversing their database in order to figure out what to do. However, because there is no unifying task-
dispatch software, each of these program is "one big program", and it is difficult to add services developed
for say the Power Supply code to those services provided by the GPIB. There are perhaps 1 or 2 extra ILCs
per Sector used because these programs are not integrated; there is actually a fair amount of I/O
underutilization because of this.

A real-timer kernel would potentially solve some of these problems. ILC application writers could
concentrate on developing tasks that could be dispatched on timer & serial interrupt. A possible candidate
is iRMX-1, which only takes 26Kbytes of RAM.

DMM Array Calls
The present linkb function calls are very inefficient. A PC console sends a packet to its respective

DMM consisting of a single 4 byte parameter (known as the "IndexILC") describing the location of the data
it wants, and the DMM typically responds with a packet containing a single 2-8 byte value. Packets going to
and fro could easily hold 15-20 IndexILCs/Values, with both location and return values being passed as
arrays.

5

For instance, the typical DBChan display has 20-30 database channels it is updating; instead of 20-
30 calls taking ~35ms, it could take perhaps 1-2 calls. Another example is getting XY data from all 96 Storage
Ring BPMs. This rate is currently limited to ~5Hz because 192 separate calls are required (192 calls *
1ms/GetAM() = ~200ms); this should only take perhaps 10 calls at maximum. Even if the array calls sent back
twice as much data in order to accommodate time-stamp information, the DMM->PC link should speed up by
factors of 2-3X.

This would require additional DMM programming effort, but would be a variation of existing
services; linkb would also be upgraded. New console applications could make use of these calls
straightaway, while existing apps could be retrofitted as needed. ILCs would remain unchanged.

To summarize, here are the suggested improvements & their results:

Affects:
Change CMM DMM ILC Result Cost/Effort

Array Calls no yes no 2-3X speed DMM->consoles low/low

iRMX in ILC no no yes unify ILC software, fewer ILCs

req'd

($50/ILC)/med

Add DMM

links

no yes no 2X throughput from DMM low/med

SendOnce no no yes 2X speed ILC->CMM low/low

Commutate no yes yes 2X speed ILC->CMM med/med

CtlPlay no yes no Reduce DMM code low/high(CtlPlay)

TimeTag no yes yes Sync'd I/O med/high

80 Links yes yes no 1.5-2X speed ILC->CMM low/med

Conclusion
There are many other possible improvements to the EBCS that are evident to anyone who takes the

time to become familiar with the system; these were listed because of their interdependencies and for their
potential payback for a small investment.

References
A. Remote Procedure Calls (RPCs) on WinNT for ALS
by Mike Chin
LSEE-113

